Frictional heat from faulting of the 1999 Chi-Chi, Taiwan earthquake

Received 23 April 2006; revised 17 July 2006; accepted 31 July 2006; published 30 August 2006.

The frictional heat generated during an earthquake is thought to be a major portion of the total energy release. However, there have been no direct measurements of the heat generated by a large earthquake. We present an estimate of the frictional heat produced by the 1999 Chi-Chi, Taiwan earthquake (Mw 7.6), from temperature anomaly that is measured in a borehole penetrating a large slip region (~10 m) of the fault. A local increase in the temperature profile across the fault is interpreted to be the residual heat generated during the earthquake. Analyses of this temperature anomaly lead to a low estimate of the dynamic shear stress, 0.5 to 0.9 MPa, and the heat produced in the large slip region of the fault, 0.68 to 1.32 \times 10^{17} J. The total frictional energy is estimated as 2.4 to 6.1 \times 10^{17} J, indicating that seismic efficiency is 1 to 3%.

1. Introduction

Past studies of heat flow measurements close to the San Andreas fault provided some information about the frictional heat production of faulting, and led to an ongoing debate about the amount of frictional heat generated by earthquakes and the absolute level of stress that drives the faulting process [Brune et al., 1969; Lachenbruch and Sass, 1980; Scholz, 2002]. Observations from the recent Chi-Chi, Taiwan, earthquake, which was notable for its large surface rupture, showed similar mineral composition but contains more phyllosilicates. Slip zones are basically composed of fault gouge and fault breccia [Tanaka et al., 2002; Heermann et al., 2003] (Figure 2b). The fault gouge shows brighter gray in color than host rocks. The boundary between fault gouge and host rock is gradual (arrows in Figure 3a), associated with thin transition zone (<2 mm) from host rock to fault gouge. Mineral grains are more disaggregated with proximity to the slip zone (Figure 3a). Grains in fault gouge are extremely fine to be cryptocrystalline materials (<2 \mu m) [Wilson et al., 2005], and the maximum size is about 25 \mu m (Figure 3b). Strong preferred alignments of phyllosilicate minerals are evident within fault gouge layer (Figure 3b). However, microscopic textures indicative of frictional melting, such as spherulitic or dendritic crystal morphology, microlites or grassy matrix [Magloughlin, 1992], are hardly observed in the slip zones.

Based on the neutron geophysical logs, Tanaka et al. [2002] reported that neutron porosity abruptly increase in the drilling interval between 285 m to 330 m. The interval exactly corresponds to the fracture zone (Figure 2a). Lithology around the interval is rather simple, which is composed of silty sandstone and mudstone. Thus, the change in porosity cannot be explained by difference of the lithology. Furthermore, fracture zones in other intervals did show similar values of porosity with surrounding host rocks, implying these fracture zones were already compacted and/or healed. Thus, the fault zone between 285 to 330 m would be the newest, being fractured during coseismic slip by Chi-chi earthquake.

A temperature profile for the borehole was measured in cased-hole with 20 cm/sec. logging velocity by a thermal logging tool three weeks after completion of drilling, which corresponded to 15 month following the earthquake. Other measurements including pumping or fluid injection were not performed before temperature logging. Unfortunately,
thin slip zones suggest that the thermal anomaly would not be generated by fluid flow but by frictional heating.

[8] Due to insufficient recovery of geothermal gradient (6°C/km) compared to those measured one year after drilling of deeper borehole (11°C/km) the detected thermal anomaly may be smaller than intrinsic value. Thus the temperature anomaly in Figure 4 is a minimum value. We estimate the maximum positive thermal anomaly would be about twice (0.2°C) the measured value based on condition of recovery of geothermal gradient.

3. Estimation of Temperature Rise and Frictional Coefficient

[9] For a first order estimate of the heat generated by the earthquake, we assume that the frictional heat generated along slip zones at the time of the earthquake caused observed temperature anomaly and any subsequent heat transfer is due entirely to conduction. We use the solution of one-dimensional conduction in an infinite medium to model the temperature anomaly. The temperature as a function of time (t) and distance (x) from a thin layer is well known [Office, 1974].

\[T(x, t) = \frac{S}{2\sqrt{\pi \alpha t}} e^{-x^2/4\alpha t}, \] (1)

where \(\alpha \) is the thermal diffusivity and the strength of the heat source \(S \) is,

\[S = \frac{\tau \cdot D}{c \cdot \rho}, \] (2)

where \(D \) is the displacement of the fault, \(c \) is the specific heat, \(\rho \) is the density, and \(\tau \) is the shear stress. The heat sources were assumed to be the two slip zones A and B observed in the drill cores (Figure 2).

[10] To evaluate equations (1) and (2), we set the time \(t \) to be \(4.36 \times 10^7 \) seconds (15 months). The thermal transport properties of fracture zone materials are directly measured using HOT DISK system [Gustavsson, 1991; Gustavsson et al., 1995] from a drill core penetrating the Chelungpu fault zone at 1100 m depth in 2004. Due to the narrow thickness of the slip zones, thermal diffusivity data of the surrounding fracture zone were considered: the average value with standard error is \(1.47 \pm 0.043 \times 10^{-6} \) m²/s from 57 data points measured from the depths surrounding the slip zone. The values of specific heat and density were measured from slip zone materials: the average values with standard errors for \(c \) and \(\rho \) are: \(c = 326 \pm 42.5 \) J/kgK, and \(\rho = 2245 \pm 58.1 \) kg/m³ from the six data from slip zones. We confirmed that the errors did not vary the results significantly. Thus, for simplicity, the approximate values, \(\alpha = 1.5 \times 10^{-6} \) m²/s, \(c = 300 \) J/kgK, and \(\rho = 2200 \) kg/m³ were considered for the calculation.

[11] Shear stress and displacements are the parameters to be estimated. We assume that the values of shear stress for the two slip zones are similar, and that the total displacements for the two slip zones are at most 10 m based on the slip inversion [Ji et al., 2003]. A two-dimensional grid search gives the best-fit curves with values \(\tau_A = 0.47 \) MPa when \(D_A = 4 \) m for peak A and \(\tau_B = 0.48 \) MPa when \(D_B =
5 m for peak B. The strengths of the heat sources (S) are 2.1 for peak A and 2.5 for peak B. Even though we assume very narrow slip zone, for example, 1 cm in thickness [Sibson, 2003], the temperature rises in slip zones are estimated to be $210^\circ C$ (A) and $250^\circ C$ (B), which are insufficiently high to melt silicate materials at shallow crustal conditions. The insufficient temperature rise would explain the fact that few microscopic textures of melting in the gouge layer.

Figure 5 shows the result of calculated temperatures using the value of shear stress, along with the observed data with the linear depth gradient removed. The shear stress doubled (about 0.95 MPa for both slip zones) if the maximum estimate of thermal anomaly is considered. A single peak approximation is also examined. In this case, heat source is located at the center of thermal anomaly (314 m depth), the best-fit curve is obtained with values $t = 0.83$ MPa and $a = 3.4 \times 10^{-6}$ m2/s with 8 m slip. The value of α independently defines the width of diffusion of temperature. Thus, the result is unrealistic because the value of thermal diffusivity is more than double the measured values of fracture zone materials. The results support the interpretation that the thermal anomaly resulted from frictional heating is due to two thin slip zones rather than a single thermal source located within the fracture zone.

Assuming that the normal stress on the fault, σ_n, is equal to the lithostatic stress, σ_l, and that the shear stress on the fault is linearly related to σ_n,

$$\tau = \mu(\sigma_n - \sigma_p),$$

where σ_p is the pore pressure, which is assumed to be the hydrostatic pressure. The coefficient of friction μ is estimated to be 0.13 for slip zone A and 0.12 for slip zone B (Figure 5). Again, the values of μ are doubled if the maximum estimate of thermal anomaly is taken. For reverse fault regimes, the horizontal compressive stress is reported to be 2 to 4 times the vertical stress [Sibson, 1974; Brace and Kohlstedt, 1980; Ikeda et al., 2001]. For this range of values, the level of friction needed to produce the thermal anomaly is quite low, with μ estimated to be 0.04 to 0.06 using a fault dip of 30°. The extremely low friction behavior might be explained by some current models of dynamic faulting, such as thermal pressurization [Wibberley and Shimamoto, 2005], fault lubrication [Brodsky and Kanamori, 2001], along with a low value of specific heat of slip zone materials. No apparent microscopic evidence of melting suggests the dynamic weakening mechanisms for this observed large slip and slip velocity of the earthquake rupture.

4. Estimation of Frictional Energy and Energy Budget

As discussed below, based on the slip distribution and analyses of the frequency content of the recorded strong-motion records, the shallow part of the northern portion appears to have ruptured in a different manner from the other portions of the fault during the earthquake [Ma et al., 2003; Ji et al., 2003; Wu et al., 2001]. The large
displacements and velocities of the fault in the north (Region I in Figure 1) imply a large fast slip with low levels of friction that produced relatively less high frequency radiation. In contrast, the other portion (Region II in Figure 1) had smaller displacements and may have ruptured with higher frictional values, producing the high acceleration ground motions. Recent high-velocity shear experiments indicate that dynamic friction lowers to around 0.2 for granular quartz-gouge as slip velocity approaches 0.1 m/s [Toro et al., 2004]. Considering that the average slip velocity for region I is approximately 1 m/s and that for region II is 0.5 m/s [Ji et al., 2003], we estimate the total frictional energy for the earthquake. The values of $\mu = 0.12$ and 0.24 (minimum and maximum estimates) ($\sigma_n = \sigma_s$; case 1) and $\mu = 0.05$ and 0.1 ($\sigma_n > \sigma_s$; case 2) are applied to large slip region I and $\mu = 0.2$ (for both cases) for the region II along the ruptured Chelungpu fault. Then, using these values to calculate the shear stress, we estimate the frictional heat, Q_f, for the entire fault using,

$$Q_f = \sum_i \tau_i u_i a_i, \quad (4)$$

where the summation i is over each sub-fault as parameterized in the slip distribution models, τ_i is given by equation (2), and u_i and a_i are the sub-fault slip and area, respectively.

We used a slip distribution for the earthquake determined from inversion of local strong-motion data [Ji et al., 2003; Wu et al., 2001]. This calculation results in values for the frictional energy of 6.80×10^{16} J and 1.34×10^{17} (min. and max.) for region I, and 1.62×10^{17} J (case 1) or 4.66×10^{17} J (case 2) for region II.

Figure 3. Microscopic occurrence of the fault gouge sampled from the slip layer at 325 m depth. (a) Occurrence of the boundary between host rock and fault gouge under plane polarized light. The boundary is gradual with thin transition zone (2 mm) between the fault gouge and host rock. (b) Magnified view of the fault gouge under crossed polarized light. Phyllosilicate minerals show strong preferred alignments. Fragments in the fault gouge are extremely fine. However, evidence of frictional melting is hardly observed in the fault gouge.

Figure 4. Temperature recorded as function of depth in the borehole. Shaded area shows the fracture zone. A and B in shaded area correspond to the slip zones A and B in Figure 2.

Figure 5. Observed temperature data (heavy dark line) and an example from grid search results for slip zones A (green line) with $D = 4$ m and B (blue line) with $D = 5$ m. Red line shows sum of calculated results of A and B.
In addition to the frictional heat, the other two major parts of the energy balance are the radiated energy of the seismic waves and the fracture energy associated with the rupture. The radiated energy of the seismic waves for this earthquake has been estimated from teleseismic data [Venkataraman and Kanamori, 2004] giving a value of 0.66×10^{16} J. The fracture energy is related to the rupture speed for an earthquake [Fossum and Freund, 1975]. Source modeling of the Chi-Chi earthquake give rupture speeds of about 0.7 times the shear wave velocity, which corresponds to a ratio of the fracture energy to the radiated energy ratio of 0.6. This results in fracture energy of 0.43×10^{16} J. Combining the frictional heat, radiated energy and fracture energy, the total energy for the earthquake is $2.41 \pm 6.11 \times 10^{16}$ J. The ratio of the radiated energy to the total energy gives a seismic efficiency of 1.1% to 2.7%. Kanamori et al. [1998] inferred that the maximum seismic efficiency was 3.6% for 1994 Bolivian deep-focus earthquake based on examinations of source parameters. It might be worthy to note that our estimate of seismic efficiency is comparable with their result even though the depths of seismic slips between the two earthquakes are largely different.

There are some uncertainties in this analysis. One of the issues is whether the temperature measurements from shallow depths are representative of the seismic faulting. If not, then the coefficient of friction of 0.05 or 0.12 (or 0.1 to 0.24) may not be representative of the large slip portion of the Chelungpu fault in the north. However, currently this is the only value we have available. Deeper penetration into a fault zone immediately after a large earthquake could contribute to further understanding energy budget of earthquakes.

Acknowledgments. We sincerely thank Y. B. Tsai of National Central University for supporting the project during these five years. We appreciate thoughtful suggestions from the anonymous reviewer. We thank H. Ito for his kindly advice for geophysical borehole logging. We also thank A. Sakaguchi, K. and K. Ujie of JAMSTEC, Japan for extensive support of on-site work of the drilling. R. Geller of the University of Tokyo helped revision of the manuscript. Thanks are extended to many students especially for C. H. Chen, C. B. Lu, H. J. Huang, C. W. Chang and W. N. Wu in National Central University that have been involved in the drilling project. The project was funded mainly by Ministry of Education, Culture, Sports, Science and Technology, Japan and National Science Council, Taiwan.

References

Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, and J. Morsi (1999), The Chi-Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault, Eos Trans. AGU, 80, 605.

M. Ando, Research Center for Seismology and Volcanology, Nagoya University, Nagoya 464-8602, Japan.

W. M. Chen, K. F. Ma, and C. Y. Wang, Geophysical Research Institute, National Central University, Chung-Li 320-54, Taiwan.

J. Mori, Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan.

H. Tanaka and N. Urata, Department of Earth and Planetary Sciences, University of Tokyo, Tokyo 113-003, Japan. (tanaka@eps.s.u-tokyo.ac.jp)